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Identification of Propagation Regimes on Integrated
Microstrip Transmission Lines

Jonathan S. Bagby, Ching-Her Lee, Dennis P. Nyquist, and Yi Yuan

Abstract— There has been a resurgence of interest in the
propagation characteristics of open integrated microstrip trans-
mission lines, This is due in part to the discovery of diverse
propagation regimes for higher-order modes on open lines. In
contrast to the dominant EHy mode, three distinct propagation
regimes exist for higher-order modes on microstrip transmission
lines. In this paper, a rigorous spectral-domain integral equation
formulation is used to analyze propagation in all three regimes.
This formulation provides a clear physical picture of the different
propagation regimes based on the mathematical location of poles
and branch points in the complex spectral-variable plane. As an
illustration, the formulation is applied to the case of an isolated
uniform microstrip transmission line. The integral equation is
discretized via the method of moments, and entire-domain basis
functions incorporating suitable edge behavior are utilized to pro-
vide convergence with relatively few terms. The results obtained
are compared to the results of other workers, and good agreement
is observed.

I. INTRODUCTION

HERE has recently been a resurgence of interest in the
propagation characteristics of open integrated microstrip
transmission lines. This is primarily due to the discovery
of diverse propagation regimes for higher-order modes on
these lines. One such mode was described by Ermert [1]
for closed microstrip structures, but its seeming nonphysical
nature prompted him to reject these modes in his analysis.
Later, Oliner [2], Grimm and Bagby [3], King [4], and
Michalski and Zheng [5] described, in different fashions,
three distinct propagation regimes for higher-order modes on
microstrip transmission lines.
The first propagation regime, denoted here as the bound
regime, is characterized by propagation constants that are real
(in the low loss limit) and fields that are confined to the vi-
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cinity of the transmission line. The dominant EHgy mode of
an isolated microstrip line is an example of a mode in this
regime (See [6] for a discussion of the dominant modes of
identical coupled lines). The second propagation regime, the
surface wave regime, is characterized by complex propagation
constants with small imaginary parts, resulting in attenuation
of the signal traversing the line (even when materials are
assumed lossless). This attenuation is due to surface waves
that are excited in the film layer of the integrated circuit
background structure. The surface waves travel away from the
axis of the transmission line, and energy from the transmission
line mode is transferred to these unguided modes. The third
propagation regime, the radiation regime, is characterized by
complex propagation constants with large imaginary parts. In
this case, losses occur from excitation of both surface waves in
the film layer and radiation into the cover medium surrounding
the open microstrip line. The existence of such leakage phe-
nomena has been empirically verified for microstrip lines [7],
and also for the related case of integrated dielectric waveguides
[8]

In this paper, a powerful and rigorous spectral-domain in-
tegral equation formulation [9] is used to analyze propagation
in all three regimes for integrated microstrip transmission
lines. This formulation has the advantage of providing a clear
physical picture of the different propagation regimes based
on the mathematical location of poles and branch points
in the complex spectral-variable plane. As an application,
the formulation is applied to the case of an isolated open
uniform integrated microstrip transmission line in a lossless
surround. The integral equation is discretized via the method of
moments, where entire-domain basis functions incorporating
suitable edge behavior are utilized to permit closed-form
evaluation of spatial integrals; convergence is attained with
relatively few terms. The numerical results obtained in all three
propagation regimes are compared to those of Oliner [2] and
Michalski and Zheng [5], and good agreement is observed.

In Section II, the spectral-domain integral equation formu-
lation is introduced. Based on the definition of mathematical
parameters in the formulation, the three propagation regimes
are identified and discussed in Section III. Section IV details
the application of the method of moments to the integral
equation. Numerical results are presented in Section V for
the case of an isolated microstrip transmission line; disper-
sion curves and current distributions in all three propagation
regimes are presented and compared to those obtained by
others. A discussion of further applicability of these techniques
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Fig. 1. Open microstrip transmission line of infinitesimal thickness on an

infinite ground plane.

in analysis of micfostrip transmission line and integrated
dielectric waveguide systems is provided in Section VI

II. FORMULATION

Consider the uniform open integrated microstrip transmis-
sion line geometry depicted in Fig. 1. The integral equation
satisfied by the unknown natural-mode surface current E(p" )
on the line with an assumed propagation dependence of
exp [j(wt — (z)] is shown in [9] to be

P (V) /l 73150 KF)dl = 0;
pel. (1)

Here, { = 3 — jo is the unknown complex axial propagation
constant of the natural mode, k(7) is the unknown natural-
mode surface current, { is a unit tangent to the microstrip line,
and V is the axially transformed del- -operator, V = V; + j(2.
The electric Hertzian potential Green ] dyad decomposes 1nto
a principal part and a reflected part, T =T g° + ‘T", where T
is the unit dyad, ¢? is the two-dimensional unbounded space
Green s functlon in integral form, and the reflected Green’s
dyad " has dyadlc components

O P s s
Tg = B9 @+ (% geT + gnl + JCgcz> +2g:2.  (2)
The scalar components of the reflected Green’s dyad are given

in terms of inversion integrals on the spectral variable £
corresponding to x

gt oo [ Ri(A) eié(w—2") p=pc(y+y')
Gn ¢ = R.(\) . (3)
ge } /—oo C()\) 4mrp,

Here, A2 = £? + (2, and the wavenumber parameters p, and
py are defined by p? = A% — k2 and P} = A? — k%, where k.
and k; are the wavenumbers in the cover region and film
layer, respectively. Convergence considerations restrict out
definitions of p. and py to Re{p.} > 0,Re{ps} > 0 (which
is a restriction of our choice of branch cuts in evaluating
the square roots of p2 and p2%, as discussed below). The
reflection and coupling coefficients R:(\), R,()), and C(})
in the integrands of the reflected Green s dyad components
are given by

Pe — Dy coth(pst) R Kp. — pstanh(pyt)
Pe + s coth(pst) " Kp. + py tanh(pyt)

Ri(N) =
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Z(K - 1)pc
[pe + py coth(pst)][Kp. + py tanh(pgt)]’
K= & @)

E¢

() =

where ¢, and ¢y are the permittivities of the cover and film
regions, respectively.

ITII. PROPAGATION REGIMES

The integrands of the spectral representation of the Green’s
dyad components in (3) contain the multivalued parameters p,
and py, defined above in terms of their squares: p2 = A2 — k2
and p3 = A? — k%. Evaluation of the spectral inversion
integrals on £ in (3) requites a choice of branch cuts in
the complex &-plane; so far, we have only the restrictions
Re{p.} > 0,Re{ps} > 0 due to convergence considerations.
Close examination reveals that all of the integrands are even
functions of ps, so a branch cut for this parameter is not
implicated. Thus, the effects of a branch cut for p; in the
complex &-plane need not be further considered.

The integrands of the reflected Green’s dyad also contain
the singular coefficients R;()), R,()), and C(A). It can
be shown that R,()\) has a simple pole singularity when
A = ), is a surface-wave eigenvalue of an odd TE mode
of the width-doubled symmetric slab background structure.
Similarly, R, () has a simple pole singularity when A = A, is
a surface-wave eigenvalue of an even TM mode of the wrdth-
doubled symmetric slab, and C()) has simple poles at both
odd TE and even TM surface-wave eigenvalues [3]. Indeed,
setting p. = v and py = jk, the denominators of R;(\),
R,(X), and C(X) have zeros when either cotk = —v/k
or tanst = egy/eck. These are the familiar eigenvalue
equations for even TE and odd TM modes of a symmetric
slab waveguide of width 2. ‘

To correctly locate the positions of the poles and branch
points in the complex £-plane, it is first necessary to invoke
material losses, and then consider the low-loss limiting case.
Thus, we assume complex perm1tt1v1t1es in the cover and ﬁlm
regions with €. = e, —je., 65 = €’ — jEf, where £”/> 0, e
0. This implies that the wavenumber in the cover reglon
the surface-wave eigenvalues, and the microstrip propagation
constant are also complex

kc:kcr_jkci; )‘ —Apr— )\pz;

¢=p-jo ©)

where all real qualitics above are assumed nonnegative.

Consider the surface wave eigenvalues A,. If ), is a surface
wave eigenvalue of the background symmetric slab structure,
corresponding poles of the Green’s dyad integrand occur in the
complex £-plane at values of &, of ¢ Wthh give & 24 2=
Substitution of (5) yields

5 /\2 C2 ,32+a2)“2j(’\pr’\pi"5a)' (6)

We assume for convenience that the integrated circuit back-
ground structure supports only one surface wave, the dominant
TM, slab waveguide mode, in frequency range of interest
(which allows us to treat only a single pair of poles in the

(A2, -2,
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Fig. 2. Spectral integration contour and migration paths of poles and branch
points in the bound regime.
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Fig. 3. Spectral integration contour and migration paths of poles and branch
points for the surface wave regime (leaky regime 1 of Fig. 5).

complex &-plane). Treatment of more general case of multiple
surface wave poles proceeds by extension of the analysis here.

Next consider the branch point &, in the complex {-plane.
The branch point &, corresponds to the multivalued wavenum-
ber parameter p., and occurs where

pe=&+C -k =0
or, using (5),
& = (k2 — k2 = 0° + 0®) = 2j(kerkei ~ Bo). (7)

Equations (6) and (7) will be used to identify the various
propagation regimes based on the locations of &, and &,
in the complex &-plane. This identification is based on a
determination of the location of the poles and branch points
with respect to the spectral inversion contour in the complex £-
plane (i.e., the real £-axis). Depending on the locations of these
singularities, inclusion of residues at poles or deformation
around branch cuts may prove necessary. The characterization
of different propagation regimes is accomplished by these
considerations.

A. Bound Regime

We first treat the case where the transmission line mode
propagation constant { = [ — ja satisfies the inequality
Re{¢?} > Re{A2} > Re{k2}. Using (5), this means that
B2 —a? > A2, — A%, > kZ — k2. It will be shown that, in
this case, the locations of the pole and branch singularities in
the complex &-plane relative to the spectral inversion contour
correspond to a microstrip mode in the bound regime.
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First assume that material losses dominate, so that A, A,; >
Ba. By (6), this locates the initial position of the poles &, in
the complex £-plane in quadrants II and IV, as shown in Fig. 2.
Similarly, (7) locates the branch-points & in the complex
&-plane in quadrants Il and IV. Now specialize to the lossless
case by taking the low-loss limit such that Sa becomes greater
than A, Ap; and kc,-k.,. By (6) and (7), this is seen to produce
a migration of the location of the poles and branch points in
the complex £-plane into quadrants I and III respectively, as
shown in the figure.

- In this case, the migration of the poles and branch points as
material losses vary does not cause them to cross the spectral
inversion contour (the real ¢-axis). Therefore, in the bound
regime, characterized by Re{¢?} > Re{A2} > Re{k2} (orin
the lossless case, by a microstrip propagation constant greater
than any surface wave eigenvalue), evaluation of spectral
integrals in the expressions for the Green’s dyad components
can be performed in a straightforward fashion, with no special
consideration given to pole and branch-point singularities in
the complex &-plane.

B. Surface Wave Regime

Next, consider the case where the transmission line propaga-
tion constant ¢ satisfies the inequality Re{\2} > Re{¢?} >
Re{k2} or, by (5), A2, — A2, > 82 —o® > k2, — k2. It will
be shown that this corresponds to a transmission line mode in
the surface wave propagation regime.

Again, assume that material losses dominate, so that
AprApi > Ba, which locates the initial positions of the poles
and branch points in the complex {-plane in quadrants II and
IV, ag before. Next, take the low-loss limit so that Bo is
greater than Ap.Ap; and k. k;; this results in the complex
é-plane picture of Fig. 3. In this case, the surface wave
poles have migrated from quadrants II and IV into quadrants
IIT and I across the inversion contour, although the branch
points once again migrate to quadrants I and III. Since the
physical situation has not been altered by decreasing losses,
the inversion contour should remain on the same side of the
surface wave pole after taking the low-loss limit, as discussed
by Boukamp and Jansen in [10].

These considerations indicate the necessity of deforming the
inversion contour around the surface wave poles as shown
in Fig. 3. Mathematically, this results in the inclusion of
residue terms in the evaluation of the spectral integrals, which
were absent in the previous case. Thus, when Re{)\f,} >
Re{¢%} > Re{k2} (or, in the lossless case, when the trans-
mission line phase constant lies between a surface wave
eigenvalue and the wavenumber in the cover medium), residue
contributions to the spectral integrals comprising the Green’s
dyad components cause the transmission line propagation
constant ¢ to become complex, even if materials are considered
lossless. This corresponds to the physical effect of surface
waves that are excited in the integrated circuit background
structure, resulting in a decay in the transmission line mode
(a > 0). The surface waves travel in the film layer at an angle
of cos™! B/A,, to the transmission line axis [3].
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Fig. 4. Spectral integration contour and migration paths of poles and branch
points for the radiation regime (leaky regime 2 of Fig. 5).
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Fig. 5. Propagation regime diagram: the EHy mode is the second higher or-
der mode of the microstrip shown in Fig. 1 with dimensions being strip width
3.0 mm, dielectric layer thickness 0.635 mm and &, = 9.8. In generating this
figure the low loss limit has been assumed so that k. and A are purely real.

C. Radiation Regime

The third propagation regime, the radiation regime, occurs
when the microstrip propagation constant ¢ satisfies the in-
equality Re{k2} > Re{¢?} or, by (5), k2. — k2, > 8% — o?.
Again, allow material losses to dominate and then consider
the low-loss case where Sa is greater than Ay, Ay, and ko, ke;.
Equations (6) and (7) show that this results in both the poles
and the branch points migrating from quadrants II and IV,
across the contour of integration, into quadrants III and I, as
depicted in Fig. 4. A similar effect is described in Assailly
et al. [11]. As in the surface-wave regime case, this necessi-
tates a deformation the contour of spectral integration around
both the branch cuts and the surface wave poles as shown in
the Figure. There is no unique way in which to deform the
inversion contour, and different choices have been used by
various workers [12].

The residue contributions at the surface wave poles again
correspond physically to excitation of surface waves in the
slab background structure. The contributions to the inversion
integral along the portion of the contour which has been
deformed around branch cuts correspond physically to the
excitation of radiation in the open cover medium (specifically,
radiation losses correspond to portions of the integration
contour where arg(p;) > w). Propagation losses are quite
large in the radiation regime, since radiation into the cover
medium and excitation of surface waves in the film layer occur
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Fig. 6. Dispersion curves for the first three higher order modes of the
microstrip structure shown in this figure: (a) phase constants; (b) attenuation
constants.

simultaneously. A dispersion diagram indicating the location
of the three propagation regimes is provided in Fig. 5.

IV. MoM SOLUTION

To apply (1) to the case of an isolated uniform microstrip
transmission line, let the unit tangent and the microstrip current
be decomposed as £ = Tt + 2t, and k= Zky + 2k,. Using
a procedure similar to that in [13}, k, and k, are expanded
for a microstrip mode for even parity in terms of Chebyshev
polynomials of the second and first kinds as follows:

o 2N~1 z
k};t = 1-— (E) nZZO anU2n+1 (5) ’
1 N-1 2

- (5)" =

Here, a,, and b, are unknown expansion coefficients and the
square-root factors in front of the summation terms yield the
anticipated edge behavior. For the microstrip modes of odd
parity, the same expansion are used with Uspp,yq and T,
replaced by Usa, and 75,1, respectively. Owing to even or
odd symmetry of the currents, only even or odd orders of
Chebshev polynomials are needed. The same functions are
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used to test the equations in the longitudinal and transverse
directions (Galerkin’s method). The usual method of moments
procedure results in appropriate. equations for the open mi-
crostrip geometry. For the case of even parity, two coupled
algebraic equations are obtained by letting £ be F or 3:

= n ® K2R - (R -C)
5 ; an(=1)"(n + 1)/ s
J2n+z(w£)J2m+2 wé) dé
- Z bn(—1)" / R0
J2n(w§)J2m+2(w§ d¢=0
M=12..,N-1
(92)
= ® R-C
zZ: (=1 (n —
3 on(-1)"(n-1)¢ /
. J2n+2(w§)J2m(w§) dg
- b
j nz_:o /0
SR B g ) Fnt)
- d¢=0.
(9b)

Similar results hold in the case of odd parity.

This is a homogeneous system of 2N simultaneous algebraic
equations for the 2N current expansion coefficients, and has
nontrivial solution only for those values (,, of the propagation
constant which render its determinant vanish. To obtain the
propagation constants (,, of various modes, iterate (using
Miiller’s method, for example) to search for the zeros of the
determinant in the complex ¢-plane. In the bound regime, the
zeros are real (o« = o) and belong to bound modes; however, in
the leaky regimes (surface wave regime or radiation regime),
the zeros are complex (( = f — ja) and correspond to leaky
modes.

In numerical evaluation of the spectral inversion integrals, a
path along the dashed line in Fig. 4 should be chosen whenever
a surface wave pole near (or on) the real £-axis is encountered.
In the radiation regime, while performing integration along
the real &-axis in the interval [0,&,] (where radiation losses
arise), the wavenumber parameter p., which involves a square
root operation, must be negated if an intrinsic function (in a
computer program) which takes the principal value of a square
root is used. Due to the presence of the branch cut, the correct
angle for p. is 180° greater than its principal value.

Numerical results, including dispersion curves and current
distributions, are provided in the next section and are compared
to those of other techniques.
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Fig. 7. Dispersion curves for the fundamental mode and the first three higher
order modes of a microstrip geometry shown in this figure: (a) phase constants;
(b) attenuation constants.

V. NUMERICAL RESULTS

Fig. 6 presents dispersion curves for the first three higher-
order modes (EH;, EHy, and EH3) for the open microstrip
geometry of Fig. 1. This structure was previously analyzed
by Oliner [2] using an asymptotic approach, and by Michalski
and Zheng [5] utilizing a mixed-potential electric field integral
equation. Results of all approaches are seen to agree well
for EH; mode; the agreement is somewhat less favorable for
higher-order modes.

Fig. 7 provides the dispersion characteristics of the fun-
damental and first three higher-order modes for a nartower
microstrip line with a higher dielectric constant. This geometry
was previously analyzed by Ermert [1] and Lee and Bagby [14]
in the bound regime, and by Michalski and Zheng [5] in both
the bound and leaky regimes. Results of the present analysis
for the EHy and EH; modes agree well; the agreement is also
quite good for the EHs mode. The dispersion curves labeled
TMp and TE; in this figure represent the first two surface wave
modes supported by the slab waveguide. When 3/kq crosses
the TMy curve, the corresponding microstrip mode enters the
leaky regime.

Figs. 6 and 7 show that the leakage is large in lower
frequency ranges, and loss due to leakage decreases as the
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Fig. 8. (a) Transverse; and (b) longitudinal current distributions of the first
higher order mode of the microstrip line depicted in Fig. 7.

frequency increases, ultimately entering a bound regime where
¢ is real (@ = 0).

Fig. 8, 9, and 10 present current distributions of the three
higher-order modes of the narrow microstrip. The numbers 1, 3
and 4 represent the real and imaginary parts of currents corre-
sponding to two different operating frequencies, respectively.
Currents in each figure are normalized to have a maximum
value of one. There is less change in the longitudinal current
distribution than in the transverse current distribution as the
microstrip mode passes from the bound regime to}a leaky
regime. Also, in the bound regime, the real part dominates
the longitudinal current and the imaginary part dominates the
transverse current, so the currents are 90° out of phase (as can
be verified by the continuity equation [14]). However this is
not the case for leaky modes.

The same current distributions are obtained in Mlchalskl
and Zheng’s work [5] using a subdomain basis method of
moments technique. Comparison shows that the form of the
currents are similar, whereas the magnitudes are different due
differing normalization.
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Fig. 9. (a) Transverse; and (b) longitudinal current distributions of the
second higher order mode of the microstrip line shown in Fig. 7.

VI. CONCLUSIONS

In this paper, a spectral-domain integral equation formu-
lation was used to analyze propagation in all three regimes
for integrated microstrip transmission lines. This formulation
provides a clear physical picture of the different propagation
regimes based on the mathematical location of poles and
branch points in the complex spectral-variable plane.

The formulation was applied to the case of an isolated
uniform microstrip transmission line. Numerical results were
obtained via the method of moments, where entire-domain
basis functions incorporating the correct edge behavior were
utilized to provide improved accuracy and convergence with
relatively few terms. The results obtained compared favorably
to those of other techniques.

Modification and extension of this work to the axial trans-
form variable plane (the {-plane) is in progress, and further
results are being obtained [15]. Other extensions of this effort
include utilizing lossy modes in the design microstrip devices,
and application of these concepts to the case of isolated and
coupled integrated dielectric waveguides.
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Fig. 10. (a) Transverse; and (b) longitudinal current distributions of the third
higher order mode of the microstrip line shown in Fig. 7.
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